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Abstract
The purpose of this presentation is to give an overview of the connection between Jones’
Subfactor Theory and Operator Algebraic Quantum Groupoids. That is why the present work
gives a quick survey of the original motivation behind this connection, the relevant results
obtained so far, and some ongoing research projects.

Motivation and relevant results
Let G be a finite group acting outerly on a 1-factor M (for example on the hyperfinite 1-
factor R). Then, the inclusion MG ⊂ M yields an irreducible depth 2 1-subfactor inclusion
of finite index |G|. Applying the Jones’ basic construction, we obtain the following tower of
1-factors

MG ⊂ M ⊂ M⋊G.
A finite group G is a particular example of a finite-dimensional Kac algebra (a finite quantum
group). Kac algebras was originally introduced in order to study a general Pontrjagin duality
in the case of non abelian locally compact groups.

Similar to the case of a finite group, given a finite-dimensional Kac algebra K acting outerly
on a 1-factor M (for example on the hyperfinite 1-factor R), we obtain an irreducible depth
2 1-subfactor inclusion MK ⊂ M with finite index and with basic construction given by

MK ⊂ M ⊂ M⋊K.
It was announced by A. Ocneanu [1] that irreducible depth 2 1-subfactor inclusions of finite
index can be characterized in terms of crossed products of finite-dimensional Kac algebras.
This conjecture was achieved with the following theorem:

Ocneanu’s theorem (Szymanśki ’94, Longo ’94, David ’96)

Let N ⊂ M be an irreducible depth 2 1-subfactor inclusion of finite index. Consider its
associated Jones’ tower (M)∈N where M0 = N and M1 = M. Then, there are two finite-
dimensional Kac algebra structures on M′∩M3 and N′∩M2, dual each other, denoted by K
and K̂ respectively, an outer action of K on M and an outer action of K̂ on N such that

N = MK, M2
∼= M⋊K, and M ∼= N⋊ K̂.

It seems natural to try to find out if Ocneanu’s theorem can be generalize to a more general
case, for example if:
• N ⊂ M is an irreducible depth 2 subfactor inclusion with no restriction on the value of

the index;
• N ⊂ M is a depth 2 1-subfactor inclusion of finite index.

We now know that similar results follow in these two cases. And, in order to explain one of
the main motivations for the study of operator algebraic quantum groupoids, we give in the
following lines a description of these two generalizations of Ocneanu’s theorem.

Inclusions and compact/discrete quantum groups
In [2], the authors gave the first steps of a possible generalization for the case of an ir-
reducible depth 2 subfactor inclusion of index not necessarily finite. In their work, they
characterize the inclusion of semi-finite factors using crossed product by twisted actions of
discrete groups, and they conjecture a result in the case of discrete Kac algebras.

In [6], the conjecture was finally proved using for it the general framework of operator al-
gebraic quantum groups (mainly the theory of multiplicative unitaries in the sense of Baaj-
Skandalis).

Theorem (Enock-Nest ’96 + Enock ’98)

Let N ⊂ M be an irreducible depth 2 subfactor inclusion, equipped with a normal semi-finite
faithful operator-valued weight T from M to N satisfying some regular condition. Consider
its associated Jones’ tower (M)∈N where M0 = N and M1 = M. Then, there are two locally
compact quantum group structures on M′∩M3 and N′∩M2, dual to each other, denoted by
G and Ĝ respectively; an outer action of G on M and an outer action of Ĝ on N such that

N = MG, M2
∼= M⋊G, and M ∼= N⋊ Ĝ.

Remark: Any locally compact quantum group arises in that way ([16]).

As corollary, it was shown that:
• If the inclusion N ⊂ M is compact, the quantum group G is a compact Kac algebra.
• If the inclusion N ⊂ M is discrete, the quantum group G is a discrete Kac algebra.
• If the inclusion N ⊂ M is compact and discrete (equivalently N ⊂ M is of finite index), the

quantum group G is a finite-dimensional Kac algebra.

Remark: In [9], a Galois correspondence was shown for action of compact groups on von
Neumann algebras.

Inclusions and finite quantum groupoids
It was suggested in [7] the possibility to characterize finite index depth 2 1-subfactor in-
clusions in terms of finite-dimensional weak Hopf C*-algebras. Weak Hopf C*- algebras
and Weak Kac algebras was introduced previously as a generalization of Kac algebras and
groupoids algebras.

Similar to Kac algebras, given a finite-dimensional weak Kac algebra K acting outerly on a
1-factor M (for example on the hyperfinite 1-factor R), we obtain a depth 2 1-subfactor
inclusion MK ⊂ M with finite index such that its basic construction is given by

MK ⊂ M ⊂ M⋊K.
In this case, K acting outerly on M means that (MK)′ ∩ M = C(K)s, where C(K)s denotes
the source counit subalgebra of K, then the inclusion above MK ⊂ M is not necessarily irre-
ducible since the source counit subalgebra C(K)s for a weak Kac algebra K is not necessarily
a trivial C*-subalgebra. In fact, C(K)s = C if and only if K is a Kac algebra.

In [11], Ocneanu’s theorem has been extended to the framework of finite quantum
groupoids (weak Hopf C*-algebras and weak Kac algebras). Moreover, in [14], a Galois
correspondence was shown for finite depth 1-subfactor inclusions of finite index. This cor-
respondence makes it possible to share information between finite quantum groupoids and
1-subfactor inclusions of finite index, for example concerning the categorical data associ-
ated with these objects.

Theorem (Nikshych-Vainerman ’00 + Nikshych-Vainerman ’00)

Let N ⊂ M be a depth 2 1-subfactor inclusion of finite index. Consider its associated Jones’
tower (M)∈N where M0 = N and M1 = M. Then, there are two finite-dimensional weak Hopf
C*-algebra structures on M′∩M3 and N′∩M2, dual each other, denoted by G and Ĝ respec-
tively, an outer action of G on M and an outer action of Ĝ on N such that

N = MG, M2
∼= M⋊G, M ∼= N⋊ Ĝ,

and [M : N] = dim(G) := ∥ΛC(G)C(G)s
∥2. Moreover, we have the equivalences of categories

NBimN(N ⊂ M) ∼= Rep(G) and MBimM(M ⊂ M2) ∼= Rep(Ĝ).

Operator algebraic quantum groupoids

A more general question arises from the two generalizations above: Is it possible to give a
similar result in the general case of inclusions of von Neumann algebras?

In [10, 13, 15], a positive answer to the last question can be found, under certain technical
conditions on the inclusion. Moreover, it was necessary to introduce a new quantum object
which extends the definition of a locally compact quantum group. This led to the current
definition of a measured quantum groupoid.

So far, a general statement of Ocneanu’s theorem is:

Theorem (Enock-Vallin ’00 + Enock ’00 + Enock ’05)

Let N ⊂ M be an inclusion of σ-finite von Neumann algebras of depth 2, equipped with a
regular normal semi-finite faithful operator-valued weight T from M to N. Suppose there
exists on N′∩M an adapted faithful semi-finite weight μ and consider the associated Jones’
tower (M)∈N where M0 = N and M1 = M. Then, there are a measured quantum groupoid
structure on M′ ∩M3, denoted by G = G(N ⊂ M), and an outer action of G on M such that

N ∼= MG, M2
∼= M⋊G.

Moreover, there are a measured quantum groupoid structure on N′ ∩ M2, denoted by Ĝ,
which is the Pontrjagin dual of G, and an outer action of Ĝ on N such that M ∼= N⋊ Ĝ. Using
these measured quantum groupoids, the Jones’ tower (M)∈N is given by

MG ⊂ M ⊂ M⋊G ⊂ (M⋊G)⋊ Ĝ ⊂ · · ·

Remark: Any measured quantum groupoid arises in that way ([17]).

Ongoing research projects

Nowadays, the theory of measured quantum groupoids seems to be the correct theory of
quantum groupoids in the framework of operator algebras, but this theory is still in an early
stage. Some examples of measured quantum groupoids which are neither quantum groups
nor finite quantum groupoids have been given but the measured quantum transformation
groupoids introduced by M. Enock and T. Timmermann [18] are the most interesting. These
quantum groupoids are constructed using special kind of actions of locally compact quan-
tum groups on von Neumann algebras. So far, it seems that these quantum objects play an
important role in the theory of operator algebraic quantum groupoids and then it is natural
to study in more detail its structure and its connection with inclusions of von Neumann al-
gebras.

Inclusions and compact/discrete quantum transformation
groupoids

In [19, 20], using measured Yetter–Drinfeld C*-algebras over compact quantum groups, we
introduce a class of compact quantum groupoids called compact quantum transformation
groupoids. These quantum groupoids are examples of measured quantum transformation
groupoids of compact type. Explicitly, given a unital measured Yetter–Drinfeld C*-algebra
(N,θ, θ̂, μ) over a compact quantum group G, there exists a compact quantum groupoid
structure on G ⋉ N, denoted by G(N,θ, θ̂, μ) and called a compact quantum transformation
groupoid. Moreover, the Pontrjagin dual of G(N,θ, θ̂, μ) is given by the discrete quantum
groupoid G(Nop, θ̂, θ, μ), called a discrete quantum transformation groupoid. Among the
main examples of such compact quantum transformation groupoids, we have
• Any compact transformation groupoid yields a commutative compact quantum

transformation groupoid.
• Finite-dimensional measured Yetter–Drinfeld C*-algebras over a finite-dimensional Kac

algebras yields compact quantum transformation groupoids which are
finite-dimensional weak Kac algebras.
• Any compact quantum group is a compact quantum transformation groupoid.

Open questions: Using the connection between inclusions of von Neumann algebras of
depth 2 and measured quantum groupoids, it seems natural to try to answer the following
open questions:
• Similar to the case of compact/discrete Kac algebras. What kind of inclusions can be

found related to compact/discrete quantum transformation groupoids?
• Similar to the case of finite quantum groupoids. Is it possible to give a connection

between some categorical data associated to inclusions of von Neumann algebras and
compact quantum transformation groupoids?
• Is there a Galois correspondence for actions of compact quantum transformation

groupoids on von Neumann algebras that generalizes the known results for compact
groups and finite quantum groupoids?
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[3] W. Szymanśki, Finite index subfactors and Hopf algebras crossed products, Proc. Amer. Math. Soc. 120,
1994.

[4] R. Longo, A duality for Hopf algebras and subfactors I, Comm. Math. Phys. 159, 1994.

[5] M.-C. David, Paragroupe d’Adrian Ocneanu et algebre de Kac, Pac. J. Math. 172, 1996.

[6] M. Enock & R. Nest, Irreducible inclusions of factors, multiplicative unitaries and Kac algebras, J. Funct.
Anal. 137, 1996.

[7] F. Nill, K. Szlachányi & H.-W. Wiesbrock, Weak Hopf algebras and reducible Jones inclusions of depth 2, I:
From crossed products to Jones towers, arXiv preprint, 1998.

[8] M. Enock, Inclusions irreductibles de facteurs et unitaires multiplicatifs II, J. Funct. Anal. 154, 1998.

[9] M. Izumi, R. Longo & S. Popa, A Galois correspondence for compact groups of automorphisms of von
Neumann algebras with a generalization to Kac algebras, J. Funct. Anal. 155, 1998.

[10] M. Enock, Sous-facteurs intermédiaires et groupes quantiques mesurés, J. Operator Theory 42, 1999.

[11] D. Nikshych & L. Vainerman, A characterization of depth 2 subfactors of 1 factors, J. Funct. Anal. 171,
2000.

[12] M. Enock & J.-M. Vallin, Inclusions of von Neumann algebras and quantum groupoids, J. Funct. Anal. 172,
2000.

[13] M. Enock, Inclusions of von Neumann algebras and quantum groupoids II, J. Funct. Anal. 178, 2000.

[14] D. Nikshych & L. Vainerman, A Galois correspondence for 1 factors and quantum groupoids, J. Funct.
Anal. 178, 2000.

[15] M. Enock, Inclusions of von Neumann algebras and quantum groupoids III, J. Funct. Anal. 223, 2005.

[16] S. Vaes, Strictly outer actions of groups and quantum groups, Crelle’s Journal 578, 2005.

[17] M. Enock, Outer actions of measured quantum groupoids, J. Funct. Anal. 260, 2011.

[18] M. Enock & T. Timmermann, Measured quantum transformation groupoids, J. Noncommut. Geom. 10,
2016.

[19] F. Taipe, Algebraic quantum transformation groupoids of compact type, arXiv preprint, 2023.

[20] F. Taipe, Locally compact quantum groupoids arising from algebraic quantum transformation groupoids,
In preparation.

Workshop on Operator Algebras: Subfactors and Applications, Isaac Newton Institute for Mathematical Sciences, Cambridge - UK
June 26 - 30, 2023


